MINI

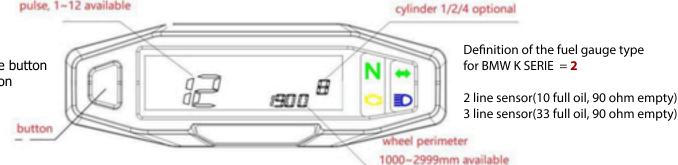
WIRE CONNECTION DIAGRAM

FUNC

SIGNAL Anode (+)

Cathode (-) Anode (+) Cathode (-)	
Battery indicator	Low
Temp indicator	Low
Oil indicator	Low
Choke indicator	Low
ABS indicator	Low
Low fuel indicator	Low
Velocity	Pulse
Revolution	Pulse
Neutral	Low
Gear 1	Low
Gear 2	Low
Gear 3	Low
Gear 4	Low
Gear 5	Low
Gear 6	Low
Sidelight	High
Turn signal right	High
Turn signal left	High
Highbeam	High
bulb indicator	High
Fuel gauge	Ohms

SETUP


Definition of the number of sensor pulses required to calculate the speed from 00 to 12, example for BMW K SERIE : Speed Pulses per revolution, to correctly indicate the speed, you must enter the number pulses per wheel revolution = 06

pulse, 1~12 available

- 1) Switch off your contact
- 2) Let your finger press the button and switch on the ignition

Wait +/- 5 seconds

Engine RPM indication 1 – 2 - 3 – 4 To indicate the correct RPM example for BMW K SERIE K1 / K75 / K100 / K1100 the compression / rebound / exhaust / intake cycle measurement on two revolutions of the crankshaft, enter the number "1"

Definition of the wheel circumference example for BMW K SERIE K1/K75/K100/K1100 = rear wheel

Calculate the rolling circumference. Indicate the circumference in millimeters of the rear wheel fully inflated tire. you only need the code of your tire and the corresponding formula: $C = \pi x (R + 2 x (H/L)/100 x L)$

The tire rolling circumference results from the dimension of the rim R in inches and the ratio between the height H and the width L. The dimension of the rim R is therefore multiplied by the value 25.4 to obtain a rim dimension in millimeters .

For a tire whose code is 130/90 R 17, for example, this gives the following circumference (C): $C = \pi x (17 \times 25.4 \text{ mm} + 2 \times (90/100) \times 130 \text{ mm})$ = 2092 mm = 209,2 cm = 2,092 m Whichever way you get the number, enter the result in the flashing digits. (+/- 2092)

